25 YEARS PROVIDING CLEAN COMBUSTION SOLUTIONS GLOBAL RECOGNITION GUEStor

Clear Solutions Clean Skies

Ms. Audrey Mascarenhas BASc, M.Eng, FCAE President and CEO

Jambi Merang - Indonesia

Well drilling, completions and production - Europe

Loading - Canada

<mark>Dehy - US</mark>

Zohr H₂S- Egypt

EUROPE

N R N

Zero flaring and venting compressor site - US

MIO WE Are

Permanent installation

PUBLIC COMPANY

- Founded in 1995
- Public in 1998 on the TSX-V QST
- Patented clean air technology

SUPERIOR TECHNOLOGY

PROVEN TRACK RECORD

Q – SERIES PLACED WORLDWIDE

Leaders in clean combustion and waste heat to power technology

 ISO certified 14034 > 99.99% combustion efficiency • Safe and quiet = community acceptance Reliable equipment requiring minimal maintenance

• 25-years of providing global clean combustion solutions • Performance recognized by regulators Global leader considered best in class - BACT • Strong technical team with deep understanding of our clients

> **Q** – SERIES COMBUSTION >99.99% EFFICIENCY

Questor portable thermal oxidizer operating in the middle of the community

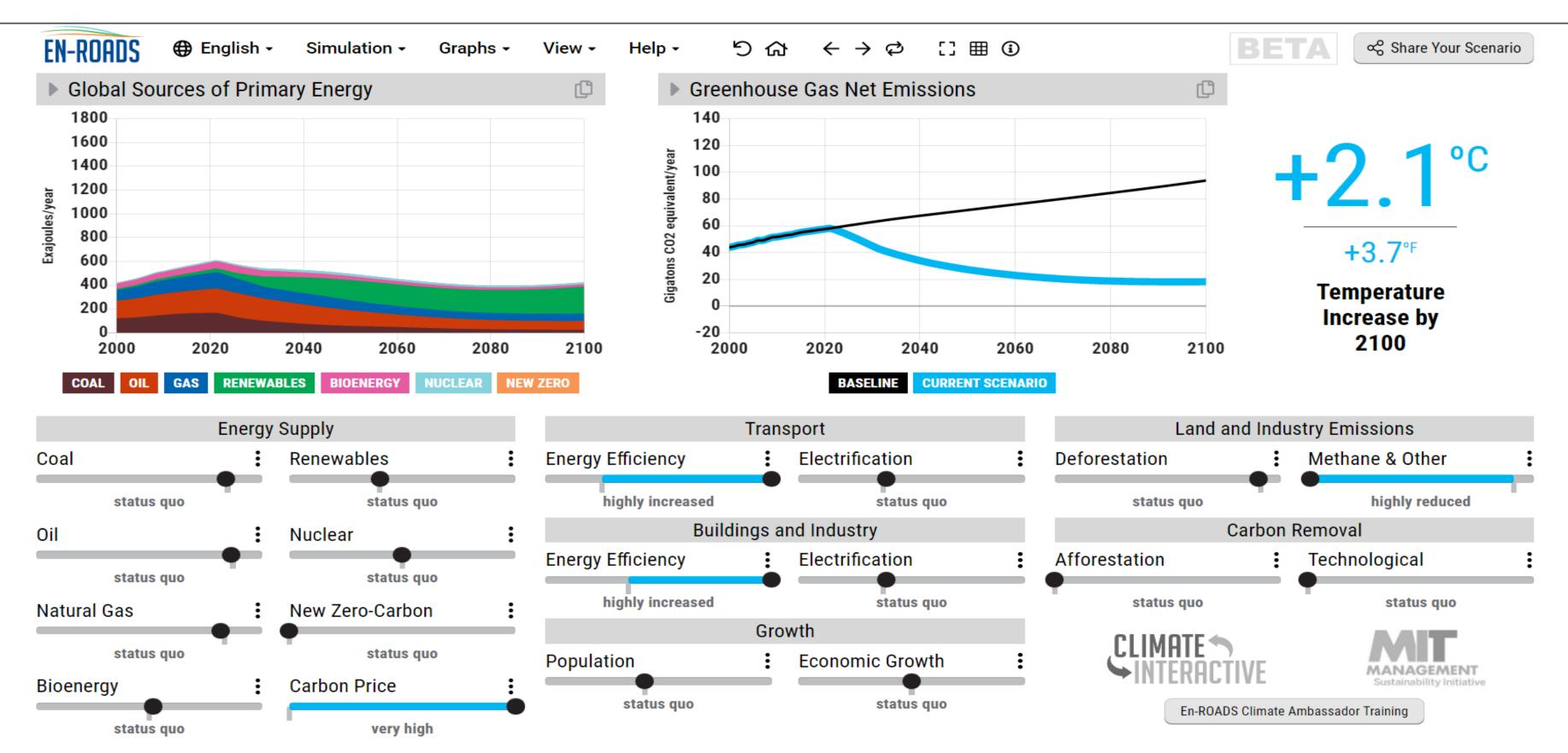
efficiency

Waste Heat to Clean Power **Convert low-grade waste heat to power from clean** combustion of flared and vented gas, industrial processes, engine exhaust, etc.

emissions

H₂ S expertise recognized globally

What We Do


Questor's Clean Combustion Units

Cleanly combust all types of waste gas at 99.99%

Site Emission Quantification

Verifies our solutions deliver regulatory compliance eliminating GHG, HAP's, VOC's, NOx, H_2S , and methane

STOPPING THE TEMPERATURE RISE *IT'S ELIMINATING METHANE AND ENERGY EFFICIENCY*

HOW WE SERVE

EMISSION REGULATION

VOCs, HAPs, Methane, **GHG** emissions

Methane is 86x worse than CO₂ from a GHG warming perspective

Community acceptance, **ESG** initiatives

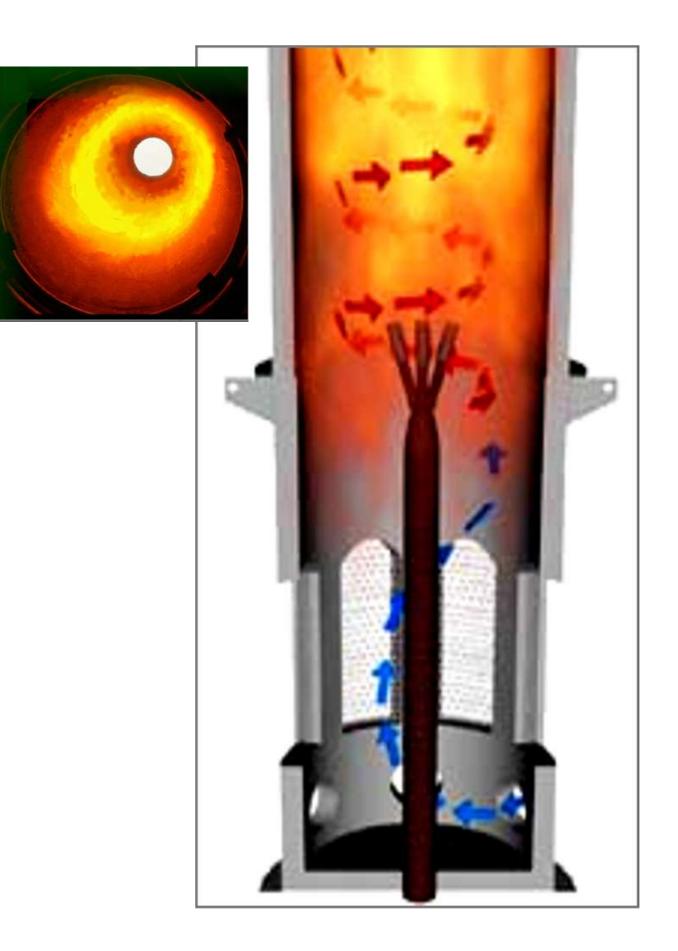
COMMUNITY &

ESG INITIATIVES

COST REDUCTION

Reduced operational, safety and capital costs

ENERGY **EFFICIENCY**


Power generation from waste heat, reduce op costs, reduced diesel usage

OUR PATENTED PROCESS

- Natural draft system; no fans, blowers, or costly and/or noisy generators needed
- No external power required; BMS runs on solar
- Air naturally induced without the use of blowers
- Induces all other low-pressure streams (e.g. tank vapors without the need for a VRU) with minimal back pressure
- A single unit handles both Low-pressure and Highpressure streams

ADVANTAGES OF THE ENCLOSED CLEAN COMBUSTION TECHNOLOGY

HEAT EASILY TRANSFERRED

- \checkmark Directly with an internal heating coil
- Slip stream of flue gas

POWER, PROCESS OR WATER EVAPORATION

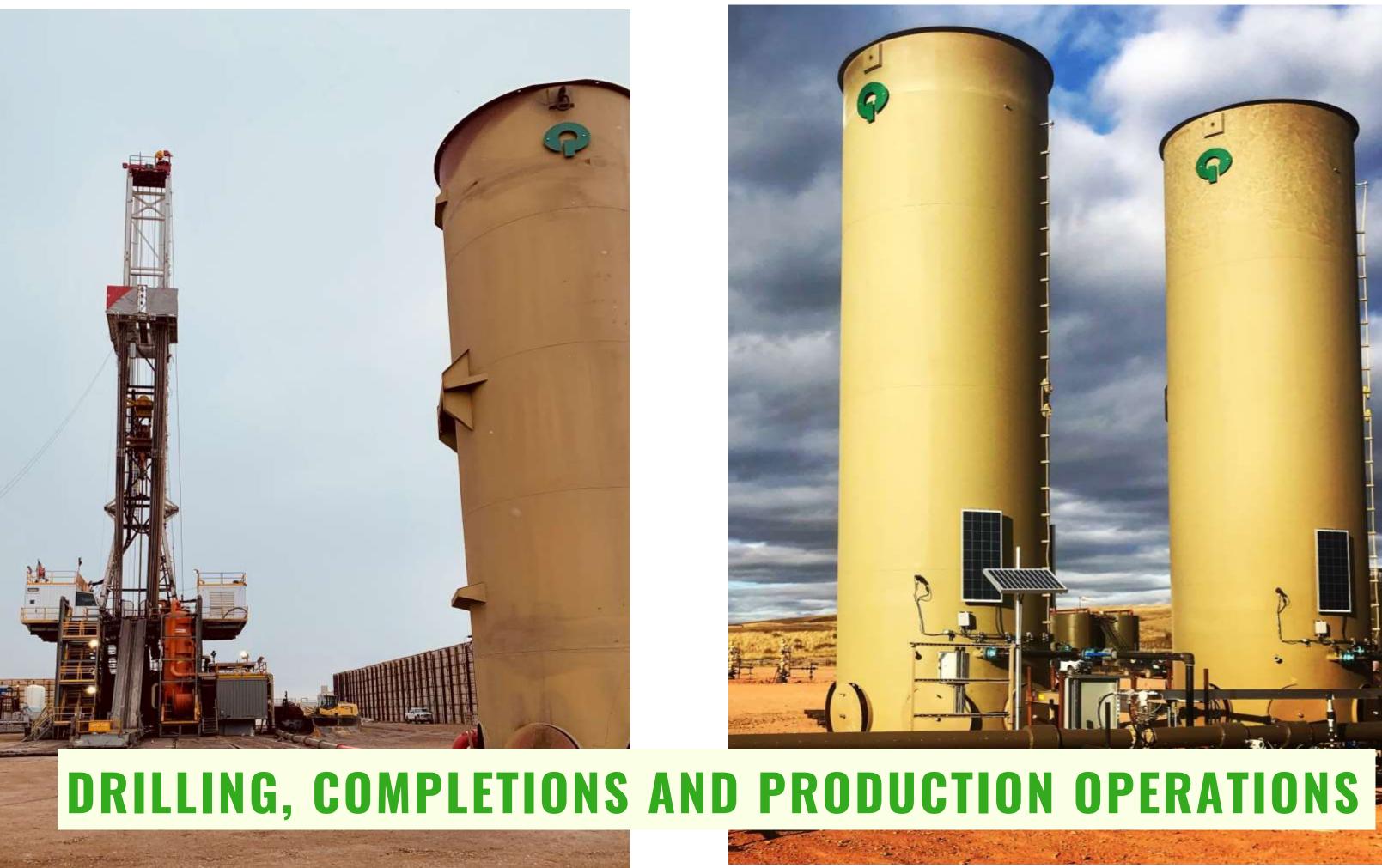
Opportunity to utilize the Heat;

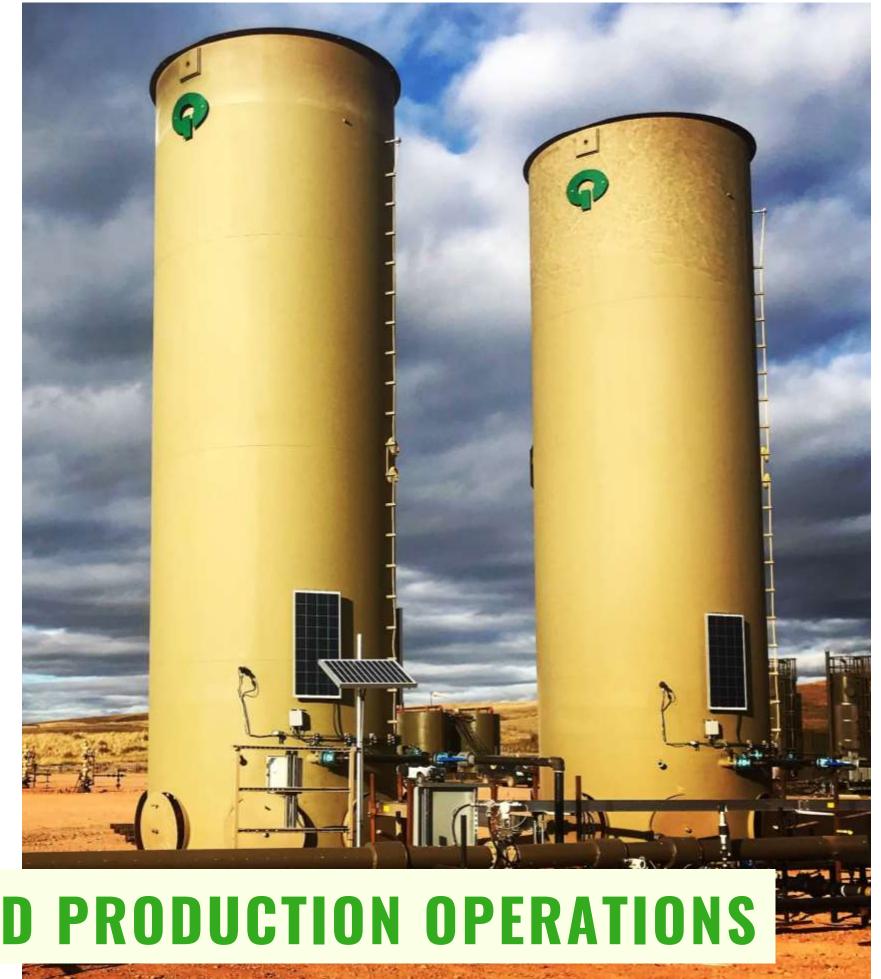
- ✓ Process heat
- \checkmark Break the oil/water emulsion
- \checkmark Produced water evaporation
- \checkmark Power generation

Post combustion gas capture for Carbon Capture, Utilization or **Storage (CCUS)**

Proven Performance ISO Certified

NORTH DAKOTA FIELD TESTING



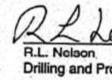

Combustor	Parameter			Fest Result		/
		Test 1	Test 2	Test 3	Test 4	Average
	VOC DRE %	99.997%	99.998%	100%	100%	100%
SITE 1	NOx (lb/MMBtu)	0.158	0.200	0.233	0.232	0.206
Q5000-17-164 (west)	CO (lb/MMBtu)	0.110	0.074	0.017	0.067	0.067
	Stack Temperature ([*] F)	1125	1412	1649	1823	1502
	VOC DRE %	100%	100%	100%	100%	100%
SITE 1	NOx (lb/MMBtu)	0.140	0.182	0.220	0.287	0.207
Q5000-17-173 (west)	CO (Ib/MMBtu)	0.049	0.008	0.002	0.011	0.018
	Stack Temperature ([*] F)	1046	1348	1522	1852	1442
		Test 1	Test 2	1	-	Average
	VOC DRE %	100%	100%			100%
SITE 2	NOx (Ib/MMBtu)	0.279	0.258	VER!	FIED	0.263
Q5000-17-183 (east)	CO (Ib/MMBtu)	0.001	0.002	150 14	1024	0.001
	Stack Temperature ([°] F)	1758	1860	ISO 14	1034	1792
	9 VOC DRE %	100%	100%	100%		100%
SITE 2	NOx (lb/MMBtu)	0.244	0.279	0.281		0.268
Q5000-17-173 (west)	CO (Ib/MMBtu)	0.002	0.004	0.002		0.003
	Stack Temperature ([°] F)	1743	1763	1775		1760
		T	Test 3	Test 2		A
	NOC DRE %	Test 1	Test 2	Test 3		Average
SITE 3	VOC DRE %	100%	100%	100%		100%
Q5000-17-123 (east)	NOx (lb/MMBtu) CO (lb/MMBtu)	0.178	0.173 0.013	0.202		0.184
	Stack Temperature (F)	1737	1706	1688		1710
	VOC DRE %	100%	100%	100%		100%
SITE 3	NOx (Ib/MMBtu)	0.205	0.198	0.204		0.202
Q5000-17-164 (west)	CO (Ib/MMBtu)	0.046	0.049	0.042		0.046
	Stack Temperature ([*] F)	1735	1754.000	1745		1745

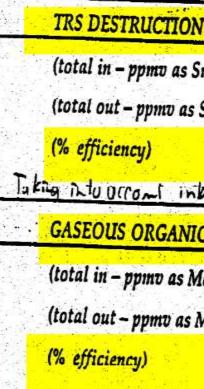
Combustor	Parameter			Test Result	t	
		Test 1	Test 2	Test 3	Test 4	Average
	VOC DRE %	99.997%	99.998%	100%	100%	100%
SITE 1	NOx (lb/MMBtu)	0.158	0.200	0.233	0.232	0.206
Q5000-17-164 (west)	CO (lb/MMBtu)	0.110	0.074	0.017	0.067	0.067
	Stack Temperature ([*] F)	1125	1412	1649	1823	1502
	VOC DRE %	100%	100%	100%	100%	100%
SITE 1	NOx (lb/MMBtu)	0.140	0.182	0.220	0.287	0.207
Q5000-17-173 (west)	CO (Ib/MMBtu)	0.049	0.008	0.002	0.011	0.018
	Stack Temperature ([*] F)	1046	1348	1522	1852	1442
		Test 1	Test 2	1		Average
	VOC DRE %	100%	100%	VED.	FIFE	100%
SITE 2	NOx (Ib/MMBtu)	0.279	0.258	VER!	FIED	0.263
Q5000-17-183 (east)	CO (Ib/MMBtu)	0.001	0.002			0.001
	Stack Temperature ([°] F)	1758	1860	ISO 14	4034	1792
	9 VOC DRE %	100%	100%	100%		100%
SITE 2	NOx (Ib/MMBtu)	0.244	0.279	0.281		0.268
Q5000-17-173 (west)	CO (Ib/MMBtu)	0.002	0.004	0.002		0.003
	Stack Temperature ([°] F)	1743	1763	1775		1760
		Test 1	Test 2	Test 3		Average
SITE 3	VOC DRE %	100%	100%	100%		100%
Q5000-17-123 (east)	NOx (Ib/MMBtu)	0.178	0.173	0.202		0.184
	CO (lb/MMBtu)	0.092	0.013	0.005		0.037
	Stack Temperature (F)	1737	1706	1688		1710
	VOC DRE %	100%	100%	100%		100%
SITE 3 Q5000-17-164 (west)	NOx (Ib/MMBtu)	0.205	0.198	0.204		0.202
(west)	CO (lb/MMBtu)	0.046	0.049	0.042		0.046
	Stack Temperature (F)	1735	1754.000	1745		1745

WHERE QUESTOR CAN HELP

- Oil and Gas production, Gas processing, Oil processing, Refining and **Petrochemical, Pipelines and Utility distribution**
- Tank vapours, Valves, Pneumatics and Compressor seals
- Process units dehydration, amine, etc.
- Well unloading, Flow backs, well testing and workovers
- Compressor, Facility and Pipeline maintenance
- Truck, Rail and Ship loading
- Emergency Shut Downs ESD's, PSV's
- **Abandoned and Suspended wells**

SHELL TESTING 2000


- Shell 29 Limestone 14-2-33-10 W5M
- 11% H₂S
- 99.99% Combustion efficiency at 2.5 and 4.8MMscf/d with 100% excess air
- Plume rise of over 400 meters
- SO₂ dispersion from 40ft combustion stack equivalent to a 110ft flare operating at 98% efficiency.
- No ground level violations of SO_2 or H_2S


Mr. Kim Eastlick Facilities Division Environment Safety & Technical Services Alberta Energy and Utilities Board

Regarding:

Attached are the findings of the Portable incinerator test conducted by Shell Canada Limited in conjunction with Norward Energy Services, the owner of the incinerator, and Questor Technologies, the manufacturer of the incinerator.

Yours truly,

(4) A.V. 2015, 197

Shell Canada Limited 400-4th Avenue S.W. P.O. Box 100, Station M Calgary, Alberta, T2P 2H5

20 March, 2000

Portable Incinerator Test Shell 29 Limestone 14-2-33-10W5m Jan 25, 2000/03/04

Drilling and Production Engineering Advisor

24			3		
N EFFICIENCIES (as Sulphur) @1	26 E3m3/day	y ing	E.	
Sulphur) Sulphur)	105100 <4.0	106900 <4.0	99800 <4.0	103900 <4.0	37
ikke air dilution	>99.9962 99.99	>99.9963 99.9	>99.9960 9 <i>9.</i> 9	>99.9962	a.
CS DESTRUCTION			the second s		
Aethane) Methane)	828102 <36.4	821376 <38.4	818214 <185.8	822564 <86.9	
	>99.9956	>99.9953	>99.9773	>99.9894	x 5
		(A)			

TALL STACKS FOR SO₂ **EXTENSIVE GLOBAL SOUR GAS EXPERTISE**

- 50% lower capital cost
- 50% Reduction in fuel gas
- No blower
- Minimal maintenance
- Simplicity of operation
- Superior SO₂ dispersion
- 40ft 335ft

dispersion

PORTABLE REFINARY 145 ft Free Standing Q1000

100MMSCF/D SOUR GAS PROCESSING PLANT

Questor tall stack for H₂S destruction and SO₂

INNOVATIVE SOLUTIONS Glycol dehydration

- Still column vapors directly piped in
- Close spacing enables a small footprint and significant cost reductions
- Eliminates condensing, storage, transportation and disposal of water
- Minimal fuel gas usage
- Guaranteed zero BTEX emissions

BEST PRACTICES

Best available combustion technology (BACT)

5.6.1 Dominion is specifying a Questor brand flare/incinerator for all glycol dehydration plants and must be included as the base proposal.

5.6 5.6.1 5.6.2 5.6.3 5.64

5.6.5

5.6.6

Fliename: (In Flie Net) 14 Glycol Dehydration Unit

Specification	Spec. No. Template Rev. No.	14
Glycol Dehydration Unit	Rev. Date	03/01/2013

scenario. Sight glass connections and high/low level switch connection on the surge are to make maximum use of the height of the surge tank, with as much gap between switch levels as possible. Sight glass visible range must include the switch level to provide accurate setting and confirmation of the switches.

5.5.13 There shall be clean out and drain connections on both the reboiler and the surge tanks. For an in-line design which incorporates a weir, there will be one 12" nozzle on either side of and very close to the weir at or near the top, and a 12" drain at the opposite end of each compartment, preferably on the bottom of the head. For over-under designs, the reboiler shall have the top clean out at one end and with drain on opposite end; and the surge shall have the top clean out at approximately a 10:30 position with opposite end clean out, preferably on the bottom of the head. These connections are to be flanged with blinds.

5.5.14 TEG temperature in the reboiler shall be controlled by the PLC and shall not exceed 380 °F at maximum load.

FLARE / INCINERATOR

Dominion is specifying a Questor brand flare / incinerator for all glycol dehydration plants, and must be included as the base proposal. Alternatives may be considered.

The flare/incinerator shall, as a minimum, provide 90% destruction efficiency.

If a higher degree of vapor treatment is necessary, a thermal oxidizer may be necessary. Refer to Appendix 13.1 for specific requirements.

In the sill column vent and ahead of the flare inlet shall be a vapor preheater to further minimize the condensation of water and distillate vapors. This preheater shall be positioned within the reboiler stack, shall be stainless steel, and will be field-insulated.

A flame arrestor shall be installed in the still outlet pipe ahead of the flare / incinerator and shall be in a vertical position. A relief valve shall be added at the reboiler to prevent overpressure of the reboiler should the flame arrestor become clogged.

Ahead of the flare / incinerator and the flame arrestor shall be a vessel or tank (commonly called a blowcase) to collect fluids that may condense under prestart conditions or upset conditions. This vessel shall permit automated pressurized blowing of captured liquids to Owner's remote liquids storage tank. Provide with proposal the anticipated operation logic for this blow tank. All level switches, manual valves, and solenoids for this are to be supplied by Vendor. Include in the outlet piping for this blowcase a quality soft-seat check valve ahead of a solenoid valve (to minimize the possibility of downstream pressure from getting back into the blowcase), ahead of the manual valve. Include with the blowcase an automated vent valve to relief residual

	Last Revised:	Page Number		
It spec. doc.	03/01/2013	10 of 35		

PIPELINE AND PLANT MAINTENANCE - VENTED BLOWDOWNS

Incineration of **Methane Emissions**

Research and Development Incineration of Methane Emissions

combustion efficiency.

Each Incineration:

- equivalent
- combustion
- cubic feet of gas
- compression

Community, Safety and Environment Climate Change Group

Contact: Hasan Imran phone: 403,920,7270 email: hasan imran@transcanada.com

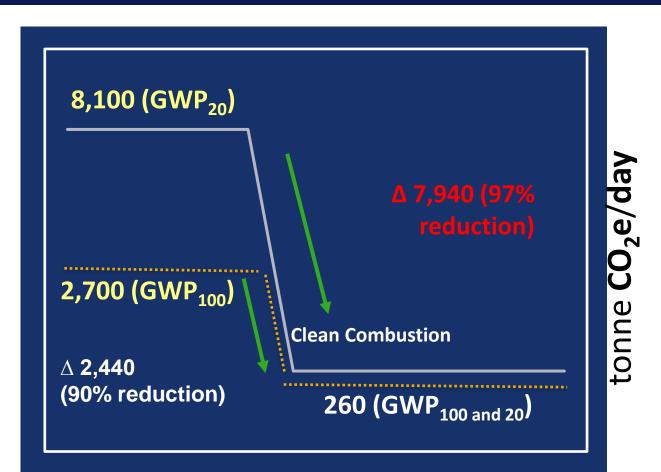
TransCanada has twice successfully tested a methane incinerator further increasing our ability to minimize the greenhouse gas (GHG) impacts of blowdowns. A blowdown is when methane is emptied from pipelines for construction and maintenance. Using a portable incinerator allows TransCanada to burn off residual methane left in pipelines after the use of air-powered expellers. Combustion converts methane to carbon dioxide, reducing its GHG impact by roughly 80 per cent. Methane is 21 times more potent than carbon dioxide over a 100 year time period in the atmosphere. Approximately 24 per cent of TransCanada's methane emissions are from blowdowns. Combusting methane reduces TransCanada's greenhouse gas emissions.

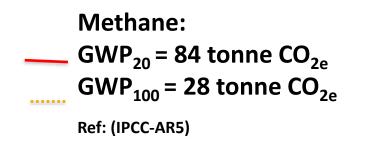
In the test Compressor Station 13, near Moose Jaw, Saskatchewan, portable transfer compressors were used to pulldown natural gas in the pipeline. In normal circumstances, the remaining gas would have been released into the atmosphere. In this case an incinerator was used to combust the remaining gas.

The second incineration trial took place at Herbert Compressor Station, near Swift Current, Saskatchewan. Maintenance was required to install a new pig receiver at a mainline pipe section. Incineration of residual methane gas was carried out after the completion of transfer compression.

In both pilot tests Questor technology's portable incinerator was used. In each case approximately 75 per cent of the remaining gas was incinerated. Questor incinerators use a vortex combustion system to achieve 99 per cent

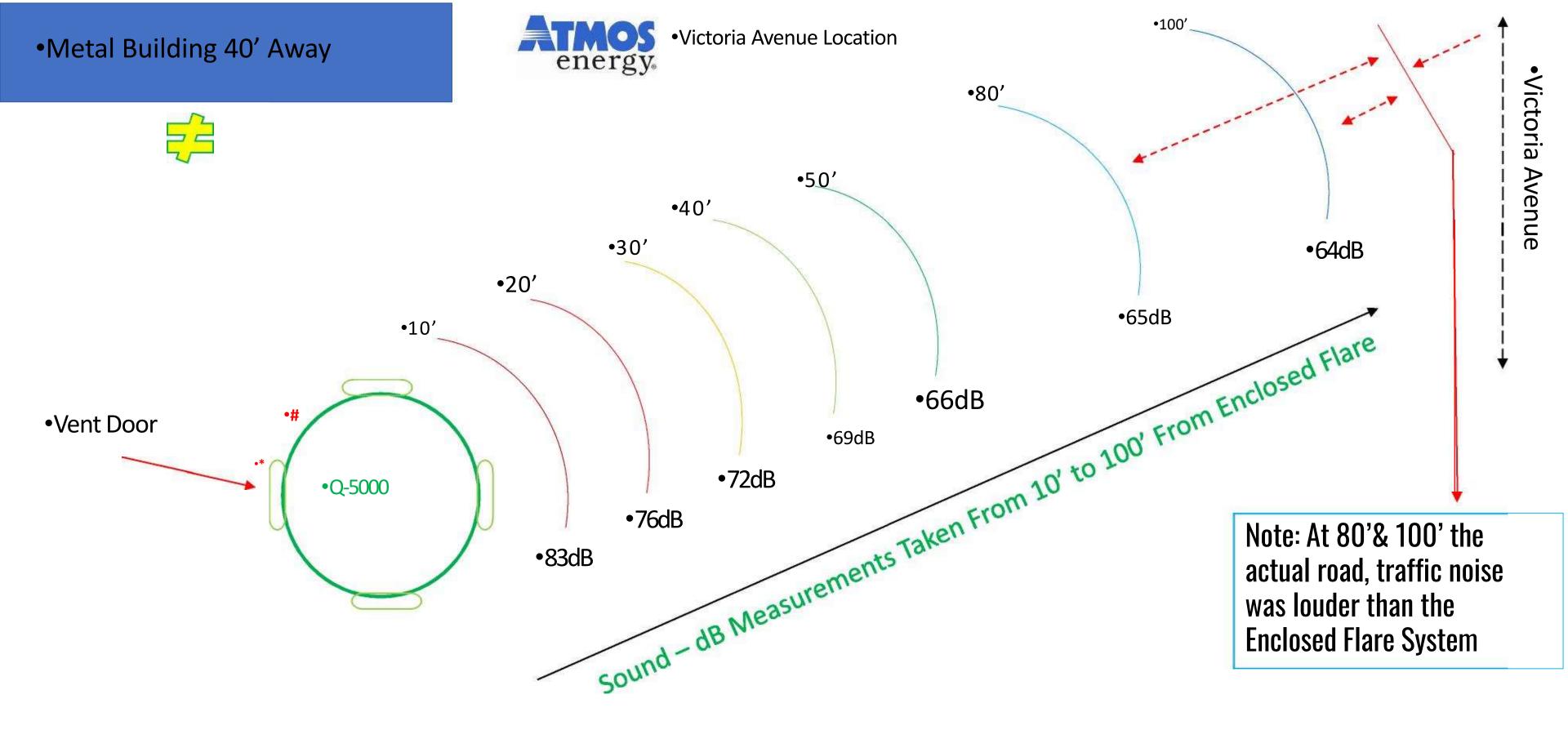
PORTABLE AND EASY SETUP SET IT AND FORGET IT


- Patented Hydraulic trailer
- Setup and takedown in less than 10 minutes
- Detachable trailer
- Eliminates crane and pickup costs
- Improved safety
- Over 120-unit rental fleet



Eliminating Methane Emissions 100%

Questor unit eliminating the venting of 5MMSCF/D Methane



\$0.10 / tCO2e

Temperature Readings: #Side of Q5000 – **182F Deg.** *Vent Door on Q5000 – **565F Deg**.

Side of Building, @ 40' away was **10F Deg. Above Ambient**

LOW GROUND HEAT RADIATION

SAFETY

- Facility integration
 Personnel safety
 No harmful pollutions emitted
- H_2S safety

MINIMAL GROUND LEVEL HEAT RADIATION

- Low forest fire risk

- No water curtain need

Permafrost protection
Air intakes can be flash arrested

COMMUNITY IMPACT

WS AND

Silently sour

Extensive planning helped Nexen comp well workover on Calgary's outskirts virti

WITH THE RECENT GAS LEAKS west of Edmonton, the iclea of sour gas makes many people very anxious. So when it comes to a sour gas well workover, no news is good news

In late October 2004, Nexen Canada Ltd. moved a service rig on to its sour gas wellsite facility, located on the east side of 84 Street NE just north of 16 Avenue NE, to complete maintenance on the well.

Nexen had suspended and isolated the wellsite in October 2003 following a routine inspection that identified a maintenance requirement. The workover entailed inspecting the casing, running new production tubing and sub-surface safety landing nipple and valve to ensure the continued safe operation of

proven unit 🍤

66 We used Questor because of

100 percent efficiency in

burning all the gas off. It's a

the quality of the units. They're

the most effective with almost

or sour gas oticed

weather ions, Using current \ _ather conditions, we knew where the H25 or SO2 plume would travel."

The use of the Questor Incinerator for combusting the sour gases (35 per cent H2S) vented from the well and the inclusive method that Nexen used when planning the project allowed for smooth passage of the workover with the EUB, the City of Calgary, the Municipal District of Rockyview and the many residential stakeholders.

"We used Questor because of the quality of the units. They're the most effective with almost 100 per cent efficiency in burning all the gas off. It's a proven unit," said Seredynski.

Although no sour gas was released during the workover.

Nexen in Calgary - 34% H₂S

Nexen

- Seredynski,

Compton Petroleum Corporation Suite 3100, 150-6 Avenue SW Petro Canada Centre, West Tower Calgary, Alberta T2P 3Y7

June 13, 2001

To Whom It May Concern:

I live one kilometer downwind of a natural gas plant owned by Compton Petroleum. When this company wanted to expand their operations and applied for a permit to incinerate sour gas I was concerned about air quality and bad smells that may result. Now after several months of operations, I can say that I have never detected any smells from the plant from where I live.

The noise level coming from the plant is such that I can hear it while outside at night if I listen for it, but it is not at a level that would bother anything. I am unable to hear the plant while in the house. The noise might be comparable to that of a large farm tractor working the same distance away - one-kilometer.

Compton is monitoring air quality in the area on an ongoing basis.

Thank you

Nelson Ferris Hines Creek, Alberta

Compton in Northern Alberta

66 I live one kilometer downwind of a natural gas plant owned by Compton Petroleum. When this company wanted to expand their operations and applied for a permit to incinerate sour gas I was concerned about air quality and bad smells that may result. Not after several months of operations can say that I have never detected any smalls from the plant where I live

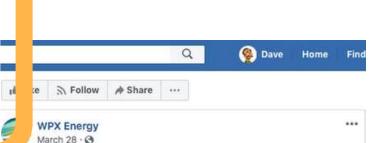
- Nelson Ferris. Hines Creek.

WPX Energy @WPXEnergy
Home
Reviews
Photos

Videos

Posts

About


Community

Info and Ads

Create a Page

Careers

WPXENERGY

Here's a picture of the thermal oxidizers we're using immediately south of Carlsbad, NM, in the community of Otis. These units protect air quality in the area where we recently completed a new oil well. (Yesterday's Facebook post has details). Until a pipeline is ready to capture the natural gas, we elected to take this additional measure rather than simply flaring. Depending on how much natural gas is flowing into the units at a given time, the combustion happening inside the units is brighter at the base.

WPX New Mexico

ZERO FLARING AND VENTING FACILITIES **One unit can handle multiple streams of varying pressures**

COMPRESSOR STATION - NEW YORK STATE

Questor Technology Inc

- Soft starts

Routine Process

Dehy Still Column, Tank, Amine, Process Units, PSV's, etc.

Non-Routine and Maintenance

• Maintenance – pipeline, engines, • Pipeline blowdowns and pigging • Equipment failure

DRILLING, COMPLETIONS AND PRODUCTION

EARLY PRODUCTION FACILITY DENVER, COLORADO

ALL GAS TIED IN

- Low noise

TYPICAL GAS SOURCE TIED IN

- Liquid storage tanks
- Truck-out vapors
- pressures and flowrates

DESIGN AND TESTING

- Sales and rental units available

• High capacity - 5MMscf/d methane eq. per unit 99.99% guaranteed combustion efficiency • No black smoke, odors, or visible flame

• Wellbore gases from HP and LP separation

• The single unit handles multiple streams with varying

• Sturdy portable design; Hydraulic trailer • TX, CO, PA, CA, NM Basin tested and proven

STRANDED GAS - E&P FACILITIES

Rental Unit

Production Unit

44 WELL PAD SITE IN COLORADO

- 30% reduction in lease size
- 25% reduction in pad cost
- Regulator recognition of 99.99% efficiency
- Incremental 400 bbls/d production
- \$20,000 revenue/d production

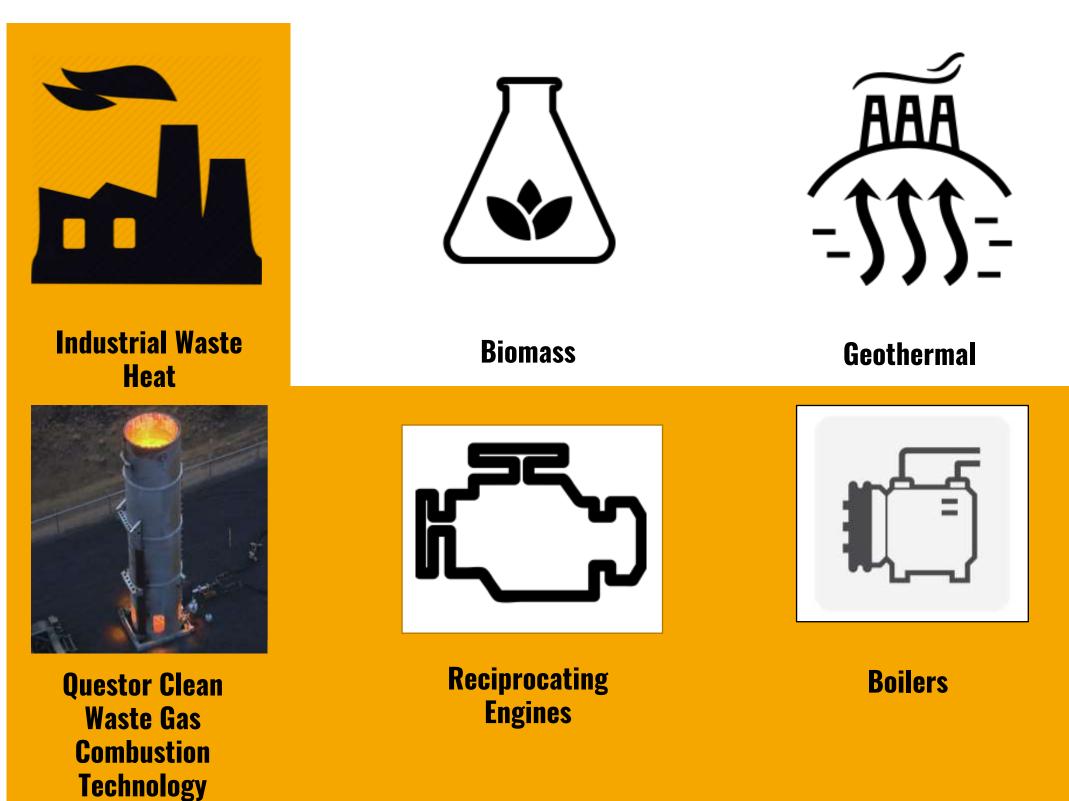
GREEN CLEAN POWER FROM WASTE GAS

HARNESS HEAT

- Harness the heat from our combustion unit
- Heat from boilers and engine flue gas
- Other process streams
- Large quantity of low-grade heat currently wasted

SUPERIOR TECHNOLOGY

- Zero emissions green power
- Consistent operation (Available 24/7)
- Small footprint
- Simple battery (hot water tank)
- No rare earth minerals needed

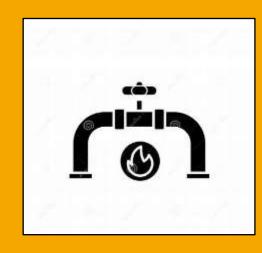

CPS ORC TECHNICAL SPECIFICATIONS

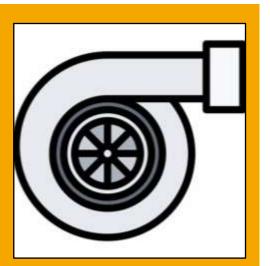
CPS MODEL	50-100	200	500	1000	1500
Thermal Input kW	650	1200	2600	5200	7400
Thermal input MBtu/hr	2210	4100	8890	17700	25200
Gross Electrical Power Output (kW)	50-100	200	500	1000	1500
Gross Thermal Input Required from incinerator (MBtu/hr)*	3200	6500	15000	30000	42000
NG Flow Rate to provide thermal input (MCF/D)**	60	125	250	500	800
Working Fluid	ENVIRONMENTALLY FRIENDLY ORGANIC FLUID				

* Assumes 60% of thermal energy from the incinerator is transferred to the ORC system

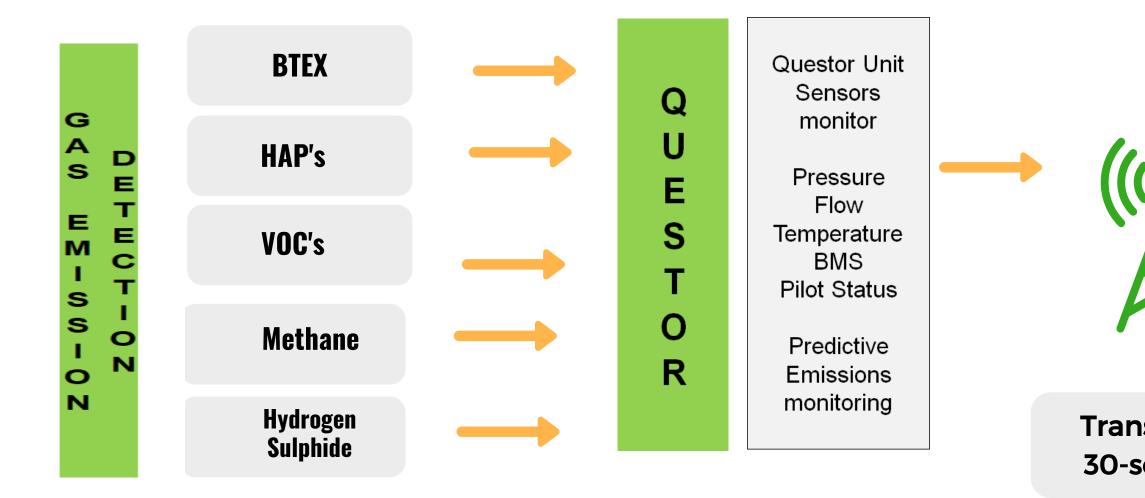
** Assumes heating value of the gas = 1000 BTU/SCF and flue gas exit temperature is 200C at the heat recovery exchanger

SOURCES OF LOW-GRADE WASTE HEAT





Solar

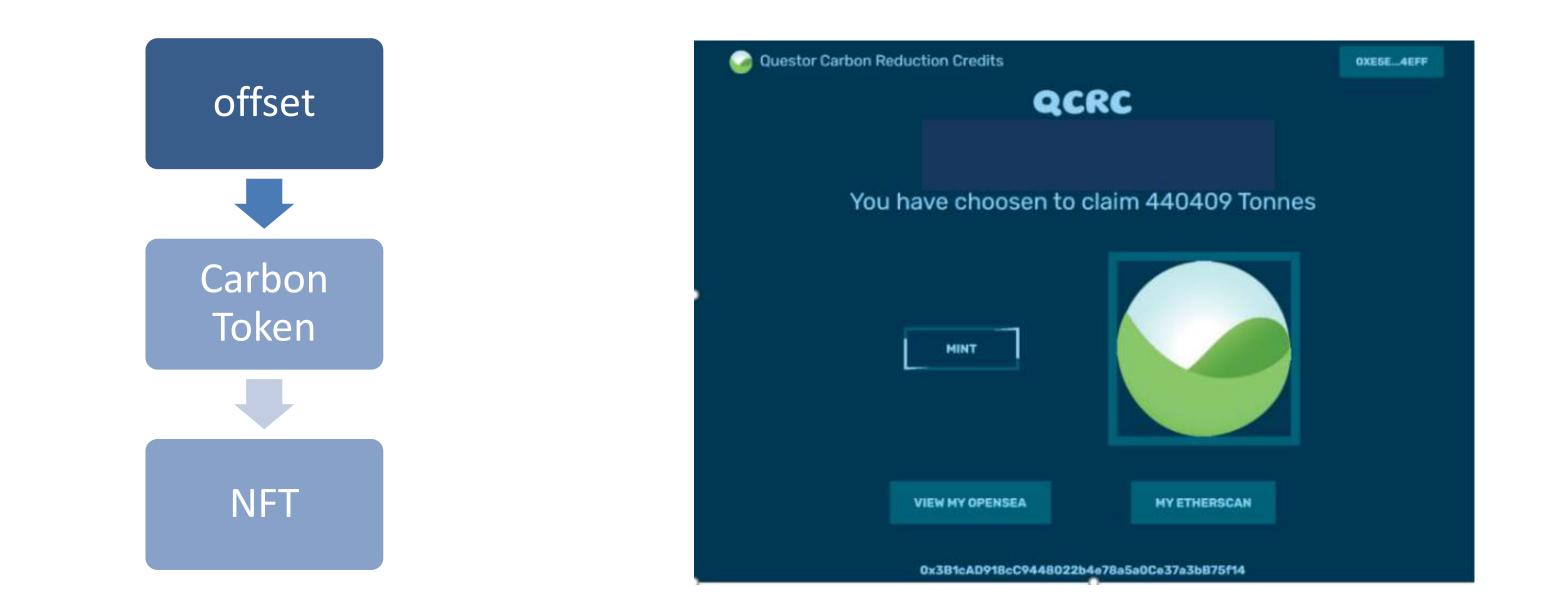

Process Fluids

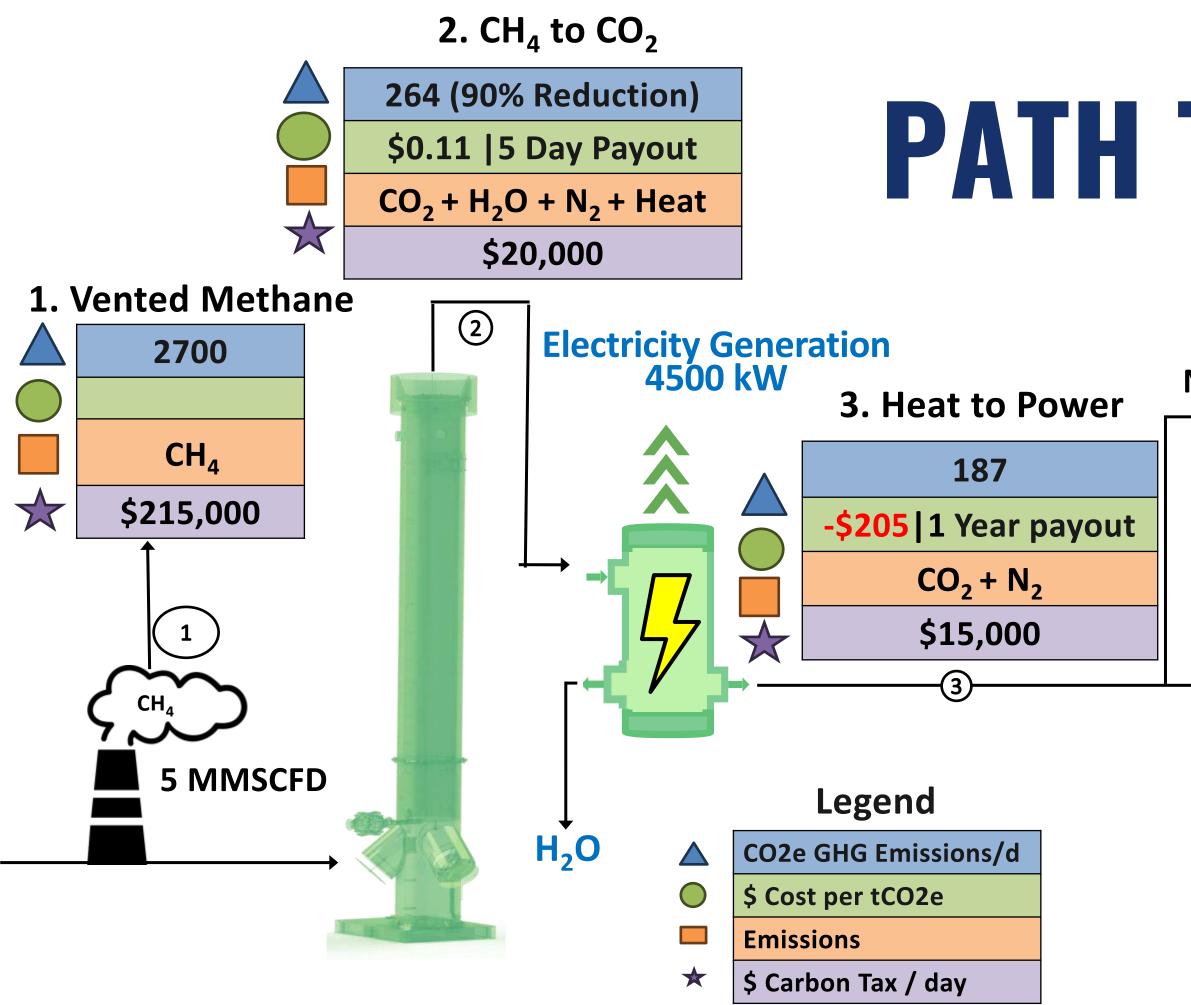
Gas Turbine

CONTINUOUS EMISSIONS Monitoring

Detection with Drones, Satellite, Handheld and fixed monitors

Continuous monitoring for zero emissions using detection tech


Transmitting on 30-sec intervals



Emissions Excellence Center

DIGITAL CARBON MARKET TOKEN CREDITS

<u>Where transparent data proves real monetizable emission reductions</u>

Assumptions:

CH4 GWP₁₀₀ = 28 tCO2e; Carbon Tax: \$80/tCO2e; Heat to power: USEPA eGrid2018 emission factors for power generation; Generation capacity of 4.5 MW; Carbon capture cost \$30/tCO2e; Cost of electricity: \$0.16/kWh (AESO average pool cost 2022); \$/tCO2e for purchase option excludes carbon credits, includes power savings; Payout time includes carbon credits

PATH TO NET ZERO $N_2 + CO_2$ Agriculture 0 Vent/Industry N_2 **\$0** CO **NET ZERO**

Carbon Capture

Products

4. Zero Emissions

\$0

NET ZERO AT AN OIL BATTERY

Assumptions:

- Gas composition: C_1 : 80%, (based on a real case)
- GWP of methane: 28
- Electricity Grid Displacement Factor: 0.57 tCO_{2e}/MWH (ref: AEP, Carbon **Offset Emissions Factor Handbook-2019**)

- Cleanly combusting the gas at 100% efficiency reduces GHG emissions 2190 tCO $_2$ e/yr.
- Generate 200kW from the waste heat reduces GHG emissions 1000 t CO_2e/yr . At \$0.08/kWh this generates a revenue of \$140k/yr.
- Assuming a 10-year project life • Capital \$1MM Revenue \$1.4MM • 31,900 t CO2e reduced at 0 to -\$13/t

- Assuming a carbon offset is worth \$50/t \$1.6MM or >100% ROI

• 300 mscf/d flared at 95% efficiency

Stranded Associated Gas <u>14.5 billion SCF is flared and vented everyday</u>

- Air Quality Impact
- Harmful emissions
- Greenhouse gas emissions
- Significant waste of energy
- Community impacts
- Quality of life

\$3.6 BILLION WILL REDUCE 1GtCO₂e/YR

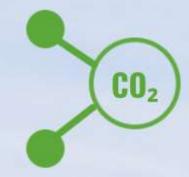
Methane global warming potential is 84x higher than CO_2 over 20 years.

Forms toxic compounds, VOC's and Ozone and ultimately CO₂

14.5 billion cubic feet of gas is flared and vented daily ¹

4,833 Questor Q5000 units could handle this volume

Cleanly combusting these streams instead of flaring and venting


Cost \$3.63B \Rightarrow 2.6MMt CO₂e/d or 1Gt CO₂e /yr.

Over a 10-year project life < \$0.50 / t CO₂e

Assumptions

- 65% flared and 35% vented 80% methane in the stream
- Flare combustion efficiency is 80% •
- 3MMscf/d can be cleanly combusted in a Questor Q5000 at 99.99% •
- GWP of 25 over a 100 year period ٠

1. Global Gas Flaring Tracker Report, GGFR, The World Bank, July 2020

Methane is 84x more potent than CO, in the short term

GWP100 = 25-34**GWP20 = 84-86**

Clear Solutions. Clean Skies

PRESENTOR

Audrey Mascarenhas President and CEO

1 (403) 539 4369 amascarenhas@questortech.com

MORE INFORMATION

www.questortech.com

CONTACT INFORMATION

140 4 Ave SW #2240, Calgary, Alberta, Canada

1 (844) 477-8669 netzero@questortech.com

QUICK UPLOAD

